MicroGrid Design, Development and Demonstration

Sumit Bose
GE Global Research
Partners: NREL, Rocky Research
May 26, 2006

Acknowledgement: This material is based upon work supported by the Department of Energy under award # DE-FC02-05CH11349.
Agenda

• Problems & Needs
• Project Objectives
• Technical Approach
 – Local Controls
 – Supervisory Controls
 – Protection
• Project Schedule & Milestones
• Interaction & Collaborations
• Benefits Summary
Problems & Needs

• Generation
 – Predominantly central plant
 – Increasing content of *intermittent renewables*

• Transmission
 – Congestion increasing
 – Capacity margins eroding
 – NIMBY and BANANA constraints

• Distribution
 – Unidirectional power flow across radial systems
 – Incompatible with emerging DG

SOURCE: GE
Map created with PowerMap from Platts, a unit of the McGraw-Hill Companies

SOURCE: ORNL, DOE
DOE Vision for The Power Grid: Grid 2030

1. National Electric Backbone
 - High-capacity transmission
 - National balance of supply & demand
 - Demand-side management

 Technologies
 - Superconducting cables
 - Advanced materials
 - HVDC, VFT & FACTS
 - Distributed controls
 - Communication

2. Regional Interconnections
 - Regional transmission
 - Multi-state bulk power exchanges

 Technologies
 - HVDC, VFT & FACTS
 - Energy storage to manage supply-demand imbalances

3. Mini-Grids
 - Distributed generation
 - Customized electricity consumption (green, COE, etc)
 - Hydrogen economy

 Technologies
 - Sensors
 - Communications
 - Smart metering
 - Distributed Controls

FY06 Annual Program and Peer Review Meeting
San Ramon, California
May 25-26, 2006
MicroGrid Concept and Background

What is it?
Coordinated electrical subsystem with
- Multiple Distributed Energy Resources (DER)
- Multiple loads
- Distribution voltage interconnections
- Capable of (macro) grid independent and dispatchable grid interactive operation

What is driving it?
- Restructuring of the Electric Power Industry
- Advances in Technology
- New Environmental Regulations
 - Increasing intermittent renewable penetrations
- Increasing Power Quality Concerns
- Heightened Reliability Awareness
- Potential efficiency benefits of CHP

Requires a systems approach, not merely an interconnection of DER components
Technical Challenges of Current Practices

Isolated power systems are not new, but…

- Distribution protection and control practice is largely incompatible with the MicroGrid concept
 - Bi-directional power flows
 - Unit level voltage and VAR support
 - Fault current contribution
 - Island operation
- Non-conventional (inverter based) generation will require new unit control and protection strategies for successful Microgrid operation
 - Intermittency of renewables
 - Low overload, short circuit ratings
 - Power rate (dP/dt) limits
 - Stability of low inertia grids
 - Potential for active load control (e.g., water and hydrogen production)
- Supervisory controls will be needed to achieve the full operating potential
 - Total energy optimization (electrical and thermal)
 - Load management
 - Unit commitment
 - Aggregation and system performance
 - Data acquisition
- Business, regulatory, and tariff structures are presently incompatible with multiparty Microgrids.
MicroGrid Categories

1. Rural Electrification
 (remote off-grid)

2. On-grid MicroGrids
 - Single Facility
 - Multi-Facility
 - Feeder
 - Substation
Project Objectives

Develop and demonstrate advanced controls, energy management and protection technologies that are needed to make microgrids technically and economically viable.
Design Philosophy

- MicroGrids are designed for robust operation using **advanced local control and protection schemes**, even in the absence of supervisory control.
- **Supervisory controls** are used to optimize customer benefits, e.g. performance, operating cost, emissions, etc.
- Energy management platforms will be economical if they incorporate **maximum commonality** among various applications.

Local Controls & Protection
- VAR management / voltage control
- Frequency control
- Energy storage
- Power quality
- Asset protection and fault isolation
- System modeling

Energy Mgmt & Supervisory Control
- Dispatch controls
- Supervisory control optimization
- DMS / real time pricing
- Physical systems for control & communication
Technical Approach

Supervisory Controls
- Used to optimize electrical and thermal performance and cost
- Manage feeder connection to bulk grid
- Manage renewable intermittency

Local Controls
- Control response based on local measurements.
- Robust response to system disturbances and supervisory level commands.
- Provide inherent stability and load sharing for grid independent and grid interactive connections.
Advanced Local Control Design

Design Philosophy
- Develop control strategies for non-conventional assets constrained by power ramp rates and current limits (these type of constraints tend to surface when limited generation capacity exists to service loads)
- Utilize non-linear control theory to ensure system stability of non-conventional generation in MicroGrid networks with mixed assets and loads

Control Objectives
- Robust response to system disturbances and supervisory level commands
- Provide inherent stability, load sharing, and fault ride-through for low-inertia grid independent, and grid interactive connections

Status
- Novel control philosophy for non-conventional generation has been developed and tested in simulation.
- Results indicate robust operation for various system contingencies when applied to constrained non-conventional generation equipment:
 - Fault ride-through and recovery
 - Grid interactive or grid independent operation
 - Low inertia MicroGrids
Local Control Simulation Example

- 12.5kV Main
 - 16 node, including laterals
 - 240v and 600v secondaries with transformers
 - 10 MVA system base
- 8,370 kW Distributed Loads
 - 2450 kW pumps (nameplate)
 - 3100 kW other motors (nameplate), including 750 kW motor start at bus 7
 - 5600 kW impedance loads

- 9,000 kVA Non-conventional DG
 - 115% current limit
 - 0.25 PU/sec + ramp rate limit

Test Case:
0.2s fault followed by disconnect with highly constrained DG

12.5kV Main
16 node, including laterals
240v and 600v secondaries with transformers
10 MVA system base
8,370 kW Distributed Loads
2450 kW pumps (nameplate)
3100 kW other motors (nameplate), including 750 kW motor start at bus 7
5600 kW impedance loads

9,000 kVA Non-conventional DG
115% current limit
0.25 PU/sec + ramp rate limit

Test Case:
0.2s fault followed by disconnect with highly constrained DG

FY06 Annual Program and Peer Review Meeting
San Ramon, California
May 25-26, 2006
Supervisory Control Design

Design Philosophy
- Achieve multiple control objectives - optimal dispatch control
- Manage voltage and power at the point of interconnect - tieline control
- Provide control set points for local control

Hierarchical Control Architecture
- Optimal dispatch control to provide P & Q set point
 - Slow time constant (5-10 mins)
- Tieline control to adjust set point based on tieline limits and commands
 - Faster time constant (10's - 100's of ms)
- Local control to execute on set points and maintain local operation
 - Fastest time constant (μs - ms)
Supervisory Control Design

Tieline Control
- Makes the Microgrid a dispatchable entity at the Point of Interconnection (POI)
 - Volt/VAR control
 - Active power flow control and power limits
 - Power ramp rates limits
 - Power-frequency control

Dispatch Algorithm
- Determines Unit Commitment (UC) and Economic Dispatch (ED) based on benefit objective function and operation constraints.
 - Incorporates Combined Heat and Power (CHP) and thermal loads.
 - Adds controllable loads as a resource.
 - Accounts for renewable generator intermittency and forecasting.
Tieline Control Simulation Example

Grid Connected
- 13.8kV main
- 4160V feeder
- 480V at asset
- 10MVA base

Main assets:
- 250kW PV
- 350kW Engine Genset
- 200kW Load (initial)

Test Case 1: VAR command step change
- 0kVar to 100kVar

Test Case 2: Load ramp
- 200kW to 500kW

Engine Genset Response

Power Limited

Power Ramp Rate Limited

Tieline VAR Step Change Response

VAR Command

Power Limited

Power Ramp Rate Limited
Supervisory Control Platform Testing

Reduce risk before on-site demonstration in Phase II.

- Identify a suitable centralized control hardware platform
- Demonstrate a selected set of supervisory control functions, in a hardware-in-the-loop environment using real time microgrid simulation in GRC lab
- Conduct control hardware and algorithm testing at NREL distributed generation test site.

GE Global Research (GRC)
Laboratory Setup Plan

FY06 Annual Program and Peer Review Meeting
San Ramon, California
May 25-26, 2006
Protection Challenges and Solutions

Challenges Created by Microgrids

- Network rather than radial operation in some cases
- Bi-directional current flow from local generation
- Low fault current in islanded mode
- Islanding issues

Protection Solutions

- Protection coordinator at the point of common coupling provides advanced protection functions based on synchronized measurements
- Transfer trip: issuance of a breaker trip command from one decision locus to another, standard tools can be used
- Differential protection, especially of the Microgrid, to provide reliable fault detection and location
- Voltage polarized directional over-current: addresses the issue of back-feeding from generation or other power sources
Life-Cycle Project Schedule, Major Milestones

Program Activities

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Program Activities</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
</tr>
</thead>
</table>
| Task 1 | Summarize system specifications and business model.
Deliverable: Report on microgrid categorization, differentiation, and case study definitions. | | | | | | | | | |
| Task 2 | Control design and system analysis.
Deliverable: Report on mini-grid control design and simulation results. | | | | | | | | | |
| Task 3 | Evaluation through case studies.
Deliverable: Report on case study evaluation results including the value story and possible recommendations on refining the existing assets. | | | | | | | | | |
| Task 4 | Validation and verification in lab.
Milestone: Final Phase 1 review.
Deliverable: Report summarizing the platform specification, lab setup, test plan, control algorithm, and validation results from laboratory testing. | | | | | | | | | |
| Task 5 | Program management.
Deliverables:
- Quarterly progress reports
- Phase 1 final report | | | | | | | | | |

Phase 2

| Task 6 | Design engineering equipment for City of Wayne Microgrid.
Milestone: Final design review.
Deliverable: Designs, drawings and specifications, single line diagrams, implementation plan, and final design review. | | | | | | | | | |
| Task 7 | Build and procure engineering equipment.
Deliverable: Report summarizing the list of equipment and bill of materials (BOM). | | | | | | | | | |
| Task 8 | Install and commission engineering equipment. | | | | | | | | | |
| Task 9 | Demonstrate the City of Wayne Microgrid.
Deliverable: Final demonstration. | | | | | | | | | |
| Task 10 | Program management.
Deliverables:
- Quarterly progress reports
- Phase 2 final report | | | | | | | | | |

Major Milestones

- Task reports, quarterly reports
- Final Design review
- Final Demonstration
- Final Report

FY06 Annual Program and Peer Review Meeting, San Ramon, California, May 25-26, 2006
Life-Cycle Project Budget

PHASE 1 BUDGET

<table>
<thead>
<tr>
<th></th>
<th>GE GRC & Subs</th>
<th>NREL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Program</td>
<td>$1,159,339</td>
<td>$100,000</td>
<td>$1,259,339</td>
</tr>
<tr>
<td>Cost Share</td>
<td>$(662,800)</td>
<td>-</td>
<td>$(662,800)</td>
</tr>
<tr>
<td>Cost to DOE</td>
<td>$496,539</td>
<td>$100,000</td>
<td>$596,539</td>
</tr>
</tbody>
</table>

PHASE 2 BUDGET

<table>
<thead>
<tr>
<th></th>
<th>GE GRC & Subs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Program</td>
<td>$2,900,058</td>
</tr>
<tr>
<td>Cost Share</td>
<td>$(1,500,000)</td>
</tr>
<tr>
<td>Cost to DOE</td>
<td>$1,400,058</td>
</tr>
</tbody>
</table>
Phase II - FY 2007

Demonstrate technology developed in Phase I
Demonstration site to be decided in Q3-2006.

Microgrid Demonstration Plan:

- Select a potential microgrid location
- Candidate site includes several 350 kW natural gas engine-generator sets for CHP and 500 KW of solar electric generation.
- Equipment installation will be executed through a separate contract.

Candidate Functional Requirements:

- Normally connected to the main grid.
- May be transitioned to islanded mode during grid outage.
- Capability to black start the Microgrid, if necessary.
- Point of interconnection active and reactive power control.
- Unit commitment and economic dispatch control including CHP.
Interactions & Collaborations

National Renewable Energy Laboratory (NREL)

Lab demonstration in Phase I using:
• 200-kW grid simulator: emulate a utility, allow for voltage and frequency control, reproduce disturbances such as sags, swells, and harmonic problems with the utility.
• Load simulator with resistive, inductive, and capacitive elements
• Investigate the supervisory control system response to events such as sudden load changes, phase imbalance condition or loss of phase.

Rocky Research
• Build/provide thermal models for dynamic analysis in Phase I
• Provide Phase II consulting for design of the new CHP system at Phase II (if needed).
Benefits Summary

Development of control algorithms & hardware that promote…

• Energy efficiency and optimal energy utilization
• Reduction in cost of energy and total cost of ownership
• Flexibility to integrate a diverse set of controllable assets
• Demonstration of renewable energy integration
• Aggregation and algorithms to enable dispatchable Microgrids
• Concepts to improve power quality and availability in islanded operation
Contact Information

Sumit Bose
GE Global Research
K1-4C26A
One Research Circle
Niskayuna, NY 12309
Phone: 518-387-5829
Email: bose@research.ge.com

Disclaimer: This presentation was prepared on account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of the information, apparatus, product, or process disclosed, or represents that it use would not infringe on privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those for the United States Government or any agency thereof.